|
|
更好的阅读体验:https://www.cnblogs.com/To-Carpe-Diem/p/19525292
大意给你一个 $n$ 维空间,给我 $n + 1$ 个点,你要确定这个球的中心点的坐标。
思路原始方程($n + 1$ 个)对于每一个点 $i$,到球心 $(x_1, \dots, x_n)$ 的距离平方相等:$\sum_{j=1}^n (p_{i,j} - x_j)^2 = R^2$ 降次消元(作差)用相邻两个方程 $(i+1)$ 和 $(i)$ 相减,消去二次项 $x_j^2$ 和 $R^2$:$$\sum_{j=1}^n (p_{i+1,j} - x_j)^2 - \sum_{j=1}^n (p_{i,j} - x_j)^2 = 0$$展开并整理:$$\sum_{j=1}^n (p_{i+1,j}^2 - 2p_{i+1,j}x_j) - \sum_{j=1}^n (p_{i,j}^2 - 2p_{i,j}x_j) = 0$$ 标准线性方程将未知数 $x_j$ 移至左侧,常数移至右侧:$$\sum_{j=1}^n 2(p_{i+1,j} - p_{i,j})x_j = \sum_{j=1}^n (p_{i+1,j}^2 - p_{i,j}^2)$$ 增广矩阵 $[A|B]$ $$\left[\begin{array}{ccc|c}2(p_{2,1}-p_{1,1}) & \dots & 2(p_{2,n}-p_{1,n}) & \sum (p_{2,j}^2 - p_{1,j}^2) \\ 2(p_{3,1}-p_{2,1}) & \dots & 2(p_{3,n}-p_{2,n}) & \sum (p_{3,j}^2 - p_{2,j}^2) \\ \vdots & \ddots & \vdots & \vdots \\ 2(p_{n+1,1}-p_{n,1}) & \dots & 2(p_{n+1,n}-p_{n,n}) & \sum (p_{n+1,j}^2 - p_{n,j}^2) \end{array}\right]$$
代码
#include<iostream>
#include<cmath>
using namespace std;
const int MAXN = 15;
const double eps = 1e-6;
int n;
double a[MAXN][MAXN];
double p[MAXN][MAXN];
bool Jornh(){
for(int i = 1;i <= n;i ++){
int piv = i;
for(int k = i + 1;k <= n;k ++){
if(fabs(a[k][i]) > fabs(a[piv][i])){
piv = k;
}
}
for(int j = 1;j <= n + 1;j ++){
swap(a[i][j], a[piv][j]);
}
if(fabs(a[i][i]) < eps){
return false;
}
for(int k = 1;k <= n;k ++){
if(k == i) continue;
double fac = a[k][i] / a[i][i];
for(int j = i;j <= n + 1;j ++){
a[k][j] -= fac * a[i][j];
}
}
}
for(int i = 1;i <= n;i ++){
a[i][n + 1] /= a[i][i];
}
return true;
}
int main(){
cin >> n;
for(int i = 1;i <= n + 1;i ++){
for(int j = 1;j <= n;j ++){
cin >> p[i][j];
}
}
for(int i = 1;i <= n;i ++){
double res = 0;
for(int j = 1;j <= n;j ++){
a[i][j] = 2.0 * (p[i + 1][j] - p[i][j]);
res += (p[i + 1][j] * p[i + 1][j] - p[i][j] * p[i][j]);
}
a[i][n + 1] = res;
}
if(Jornh()){
for(int i = 1;i <= n;i ++){
printf("%.3lf ", a[i][n + 1]);
}
}
return 0;
}
2026-02-04 20:39:29
|