
二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

二分答案

河南省实验中学信息技术组

2026年 01月 24日

1 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

二分

• 二分是一种非常精妙的算法，经常能为我们提供解决的问题的突破口，而且
能节约算法时间。

• 二分的实现方法多种多样，但是写出正确的二分算法是一件不容易的事1。
• 对于整数域上的二分，需要注意终止边界、左右区间取舍时的开闭情况，避
免漏掉答案或造成死循环；对于实数域上的二分，需要注意精度问题。

1据说，只有 10%的程序员能写对二分。
2 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

整数域上的二分

• 在单调递增序列 𝑎中查找 ≥ 𝑥的数中最小的一个数的下标：
1 int l = 1, r = n;
2 while(l < r)
3 {
4 int m = (l + r) / 2;
5 if(a[m] >= x) r = m;
6 else l = m + 1;
7 }
8 int ans = l;

• 在单调递增序列 𝑎中查找 ≤ 𝑥的数中最大的一个数的下标：
1 int l = 1, r = n;
2 while(l < r)
3 {
4 int m = (l + r + 1) / 2;
5 if(a[m] <= x) l = m;
6 else r = m ‐ 1;
7 }
8 int ans = l;

• 上述两种二分写法保证最终答案处于闭区间 [𝑙, 𝑟]以内，循环以 𝑙 == 𝑟结束，
每次二分的中间值𝑚会归属于左半段与右半段二者之一。

3 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

整数域上的二分

• 𝑚取值和 [𝑙, 𝑟]的范围的缩小要匹配，否则很容易造成漏解、死循环等问题。
• 为了正确书写，可以固定二分流程为：

• 分析具体问题，确定左右半段哪一段是可行区间，以及𝑚归属哪一半段。
• 如果答案在右半段，那么令𝑚 = (𝑙 + 𝑟)/2(尽可能往左半段落)，根据情况令

𝑟 = 𝑚或 𝑙 = 𝑚 + 1；如果答案在左半段，那么令𝑚 = (𝑙 + 𝑟 + 1)/2(尽可能往
右半段落)，根据情况令 𝑙 = 𝑚或 𝑟 = 𝑚 − 1。

• 二分终止条件是 𝑙 == 𝑟，该值就是答案所在位置。
• C++ STL中lower_bound函数实现了在递增序列中查找≥ 𝑥的最小的值所在
的位置，upper_bound函数实现了递增序列中查找> 𝑥的最小的值所在的位
置。

4 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

实数域上的二分

• 实数域上的二分需要确定精度 𝑒𝑝𝑠，以 𝑙 + 𝑒𝑝𝑠 < 𝑟为条件，每次根据在𝑚
位置上的值的大小决定如何缩小区间。

1 while(l + eps < r)
2 {
3 double m = (l + r) / 2;
4 if(cal(m) <= x) l = m;
5 else r = m;
6 }

• 一般需要保留 𝑘位小数时，取 𝑒𝑝𝑠 = 10−(𝑘+2)。
• 如果精度不容易确定或表示时，会采用循环固定次数的二分方法。
1 for(int i = 1; i <= 100; ++i)
2 {
3 double m = (l + r) / 2;
4 if(cal(m) <= x) l = m;
5 else r = m;
6 }

5 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】设计书架

【题目描述】
有 𝑛本书，第 𝑖本书的厚度为 𝑎𝑖。现在将它们按照顺序摆放在一个𝑚行的书架
上，现在请你设计一款书架使得书能被摆放在书架里且书架宽度最小。
【输入格式】
第一行两个整数 𝑛, 𝑚(1 ≤ 𝑚 ≤ 𝑛 ≤ 2 × 105)，分别表示书本的数目和书架的行
数。
第二行 𝑛个整数，表示这 𝑛本书的厚度，输入保证 1 ≤ 𝑎𝑖 ≤ 105。
【输出格式】
一行一个整数表示最小的书架宽度。
【输入样例 1】

3 2
2 1 3

【输出样例 1】
3

【输入样例 2】
10 4
4 7 6 1 4 1 1 8 2 10

【输出样例 2】
12

6 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】设计书架

• 该问题通过推导、找规律等方法很难求出书架的最小宽度。
• 但是如果问这 𝑛本书能否摆放在一个宽度为 𝑘的书架上？这显然是比较简
单的。

• 那么可以从小到大枚举书架的宽度，直到书能被正好放在书架上时，书架的
宽度就是答案。

7 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】设计书架

1 bool can(long long k)
2 {
3 int p = 1; // 当前正在使用第 p 层书架
4 long long r = k; // 当前层的书架剩余宽度
5 for(int i = 1; i <= n; ++i)
6 {
7 if(a[i] <= r) r ‐= a[i];
8 else ++p, r = k ‐ a[i];
9 }
10 return p <= m; // 使用的书架层数不能多于 m
11 }
12
13 long long k = max(1ll, s / m); // 枚举的书架宽度
14 for(int i = 1; i <= n; ++i) k = max(k, a[i]);
15 while(!can(k)) ++k; // 只要书架宽度不足就增加
16 cout << k;

• 每次尝试都需要将所有书依次放在书架上，尝试的次数如果过多，那么我们
将会花费大量时间。有没有方法能减少尝试的次数呢？

8 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】设计书架

• 显然，在从小到大枚举书架宽度的过程中，开始时书无法全部放入书架，但
当书架的宽度增加到一定程度，书就可以全部放入书架，而且后续枚举更宽
的书架时显然也是可以放入全部书籍的。

• 将求解书架宽度的问题转化为给定一个书架宽度 𝑘，判断这 𝑛本书能否放入
一个宽度为 𝑘的书架上的问题，求满足条件的最小的 𝑘。由此得出的评价函
数如下：

𝑐𝑎𝑛(𝑘) = {0, 𝑘 < 𝑎𝑛𝑠
1, 𝑘 ≥ 𝑎𝑛𝑠

• 评价函数在 [𝑚𝑖𝑛𝑘, 𝑠]中单调递增，于是问题变为：查找使得 𝑐𝑎𝑛(𝑘) = 1的
最小的 𝑘。因此可以二分枚举书架的宽度 𝑘，判断这 𝑛本书能否放入一个宽
度为 𝑘的的书架上，根据 𝑐𝑎𝑛(𝑘)的值，缩小答案所在的区间。

9 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】设计书架

1 bool can(long long k)
2 {
3 int p = 1; // 当前正在使用第 p 层书架
4 long long r = k; // 当前层的书架剩余宽度
5 for(int i = 1; i <= n; ++i)
6 {
7 if(a[i] <= r) r ‐= a[i];
8 else ++p, r = k ‐ a[i];
9 }
10 return p <= m; // 使用的书架层数不能多于 m
11 }
12
13 long long l = max(1ll, s / m), r = s;
14 for(int i = 1; i <= n; ++i) l = max(l, a[i]);
15 while(l < r)
16 {
17 int k = (l + r) / 2;
18 if(can(k)) r = k;
19 else l = k + 1;
20 }
21 cout << l;

10 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】愤怒的牛

【题目描述】
农夫约翰建造了一座有 𝑛间牛舍的小屋，牛舍排在一条直线上，第 𝑖间牛舍在 𝑥𝑖
的位置，但是约翰的𝑚头牛对小屋很不满意，因此经常互相攻击。为了防止牛
之间互相伤害，约翰决定自己分配牛舍使任意两头牛之间的最小距离尽可能的
大。那么，这个最大的最小距离是多少呢?
【输入格式】
第 1行有两个整数 𝑛和𝑚(2 ≤ 𝑚 ≤ 𝑛 ≤ 105)；
接下来 𝑛行，第 𝑖行一个整数 𝑥𝑖(0 ≤ 𝑥𝑖 ≤ 109)，表示第 𝑖间牛舍的位置。
【输出格式】
一个整数，表示最大的最小距离。
【输入样例】

5 3
1 2 8 4 9

【输出样例】
3

【样例解释】
共有 5间牛舍，它们的位置为 1, 2, 4, 8, 9，需要
安排 3头牛，为了让奶牛们尽可能离的远，显然
分配到 1, 4, 9最合适。

11 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】愤怒的牛

• 如果要求奶牛之间的间距过大，牛舍可能无法安排所有奶牛，而随着要求的
间距减少，牛舍就可以安排所有奶牛，要求解的就是这个最大满足条件的间
距。

• 那么可以从大到小枚举要求的间距，判断牛舍能否安排所有奶牛，直到能安
排所有奶牛。

1 bool can(int k) // 在要求最小间距为 k 的情况下能否安排所有奶牛
2 {
3 int p = 1; // 当前可以安排 p 头牛
4 int last = 1; // 上一头牛所在的牛舍
5 for(int i = 2; i <= n; ++i)
6 if(a[i] ‐ a[last] >= k) ++p, last = i;
7 return p >= m;
8 }
9
10 sort(a + 1, a + n + 1);
11 int k = a[n] ‐ a[1]; // 牛之间的最小间隔
12 while(!can(k)) ‐‐k;
13 cout << k;

12 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】愤怒的牛

• 上述算法将求解间距的问题转化为给定一个间距 𝑘，判断奶牛能否全部安排
的问题，求最大的满足条件的 𝑘。评价函数如下：

𝑐𝑎𝑛(𝑘) = {1, 𝑘 ≤ 𝑎𝑛𝑠
0, 𝑘 > 𝑎𝑛𝑠

• 评价函数在 [𝑚𝑖𝑛𝑘, 𝑚𝑎𝑥𝑘]中单调递减，于是问题变为：查找使得
𝑐𝑎𝑛(𝑘) = 1的最大的 𝑘。因此可以二分枚举间距 𝑘，判断奶牛能否全部安排，
根据 𝑐𝑎𝑛(𝑘)的值，缩小答案所在的区间。

1 sort(a + 1, a + n + 1);
2 int l = a[n] ‐ a[1], r = a[n] ‐ a[1];
3 for(int i = 1; i <= n ‐ 1; ++i) l = min(l, a[i + 1] ‐ a[i]);
4 while(l < r)
5 {
6 int k = (l + r + 1) / 2;
7 if(can(k)) l = k;
8 else r = k ‐ 1;
9 }
10 cout << l; 13 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

【题目描述】
给定 𝑛个整数 𝑎𝑖，求一个尽可能长的非空连续子段使得子段和 ≤ 𝑆。
【输入格式】
第一行两个整数 𝑛, 𝑆(1 ≤ 𝑛 ≤ 2 × 105, 1 ≤ 𝑆 ≤ 109)。
第二行 𝑛个整数 𝑎𝑖(−109 ≤ 𝑎𝑖 ≤ 109)。
【输出格式】
一个整数，最长非空连续子段的长度。
【输入样例】

6 10
‐1 2 7 ‐4 9 12

【输出样例】
4

【样例解释】
最长的满足条件的子段是 −1, 2, 7, −4。

14 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

• 枚举 1：枚举所有子段，判断子段和是否满足 ≤ 𝑆，求最长的子段。
1 int ans = 0;
2 for(int r = 1; r <= n; ++r)
3 for(int l = 1; l <= r; ++l)
4 if(s[r] ‐ s[l ‐ 1] <= S) ans = max(ans, r ‐ l + 1);
5 cout << ans;

• 枚举 2：从大到小枚举子段长度，判断对应长度的子段是否满足 ≤ 𝑆，求最
长的子段。

1 int ans = 0;
2 for(int len = n; len >= 1; ‐‐len)
3 {
4 for(int r = len; r <= n; ++r)
5 {
6 int l = r ‐ len + 1;
7 if(s[r] ‐ s[l ‐ 1] <= S) ans = max(ans, len);
8 }
9 }
10 cout << ans;

• 时间复杂度：O(𝑁2)。
15 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

• 显然可以从大到小枚举子段长度 𝑘，判断是否存在长度为 𝑘的子段满足子段
和 ≤ 𝑆。

1 // s[] 是前缀和数组
2 bool can(int k) // 是否存在长度为 k 的子段满足条件
3 {
4 for(int r = k; r <= n; ++r)
5 if(s[r] ‐ s[r ‐ k] <= S) return true;
6 return false;
7 }
8
9 int k = n;
10 while(!can(k)) ‐‐k;
11 cout << k;

• 上述判定能否作为二分答案的评价函数？为什么？

16 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

• 上述评价函数不具备单调性，不能作为二分答案的评价函数。
• 修改评价函数为：对于枚举的长度 𝑘，判断是否存在长度大于等于 𝑘的子段
满足字段和 ≤ 𝑆。评价函数如下：

𝑐𝑎𝑛(𝑘) = {1, 𝑘 ≤ 𝑎𝑛𝑠
0, 𝑘 > 𝑎𝑛𝑠

• 评价函数在 [1, 𝑛]中单调递减，于是问题变为：查找使得 𝑐𝑎𝑛(𝑘) = 1的最大
的 𝑘。因此可以二分 𝑘的大小，判断是否存在长度大于等于 𝑘的子段满足字
段和 ≤ 𝑆，根据得出的 𝑐𝑎𝑛(𝑘)的值，缩小答案所在区间。

17 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

1 // s[] 是前缀和数组
2 bool can(int k) // 是否存在长度大于等于 k 的子段满足条件
3 {
4 for(int r = k; r <= n; ++r)
5 for(int l = 1; l <= r ‐ k + 1; ++l)
6 if(s[r] ‐ s[l ‐ 1] <= S) return true;
7 return false;
8 }
9
10 int l = 1, r = n;
11 while(l < r)
12 {
13 int k = (l + r + 1) / 2;
14 if(can(k)) l = k;
15 else r = k ‐ 1;
16 }
17 cout << l;

• 时间复杂度：O(𝑁2 log𝑁 )。

18 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】最长子段

• 上述算法的时间复杂度主要受限与评价函数的时间复杂度，如何降低？
• 对于枚举的区间右端点 𝑟，如果想让长度 ≥ 𝑘的子段和尽可能小，那么只需
要让区间左端点的前缀和最大即可，也即 max

0≤𝑙≤𝑟−𝑘
𝑠[𝑙]。

• 通过观察可以发现，随着右端点 𝑟的枚举，每一次只有一个新的区间左端点
进入范围，那么只需要一个变量维护前缀和最小值即可。

1 // s[] 是前缀和数组
2 bool can(int k) // 是否存在长度大于等于 k 的子段满足条件
3 {
4 long long x = s[0]; // 前缀和最小值
5 for(int r = k; r <= n; ++r)
6 {
7 x = max(x, s[r ‐ k]); // 对于当前右端点有一个新的区间左端点
8 if(s[r] ‐ x <= S) return true;
9 }
10 return false;
11 }

• 时间复杂度：评价函数的时间复杂度为 O(𝑁 )，故而整体复杂度为
O(𝑁 log𝑁 )。

19 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】Best Cow Fences

【题目描述】
农夫约翰的农场由 𝑛个牧场构成，每一个牧场内有一定数量的奶牛 𝑎𝑖。约翰想
要在这些牧场中用栅栏划出一组相邻的牧场来构成一个特殊的牧区，这个牧区
要至少包含 𝐹 个牧场，牧区内牧场的平均奶牛数量为该划分方案的平均值。求
所有有划分方案的平均值中的最大值。
【输入格式】
第一行：两个空格隔开的整数 𝑛(1 ≤ 𝑛 ≤ 105)和 𝐹(1 ≤ 𝐹 ≤ 𝑛);
接下来一行 𝑛个整数，表示牧场内牛的数量 (0 ≤ 𝑎𝑖 ≤ 2000)。
【输出格式】
输出只有一行，一个整数表示最大平均值的 1000倍 (下取整)。
【输入样例】

10 6
6 4 2 10 3 8 5 9 4 1

【输出样例】
6500

【样例解释】
最长的满足条件的子段是 10, 3, 8, 5, 9, 4，平均值
为 6.5，故而答案为 6500。

20 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】Best Cow Fences

• 问题实际上要求的是所有长度大于 𝐹 的子段的平均值的最大值。
1 double k = 0;
2 for(int r = F; r <= n; ++r)
3 for(int l = 1; l <= r ‐ F + 1; ++l)
4 k = max(k, (s[r] ‐ s[l ‐ 1]) / (r ‐ l + 1));
5 cout << (int)(k * 1000);

• 时间复杂度：O(𝑁2)。
• 如何用二分答案优化？二分什么？评价函数是什么？

21 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】Best Cow Fences

• 二分平均值 𝑘，判断是否存在一个长度 ≥ 𝐹 的子段的平均数大于等于 𝑘，求
满足条件的最大的平均值。评价函数 𝑐𝑎𝑛(𝑘如下：

𝑐𝑎𝑛(𝑘) = {1, 𝑘 ≤ 𝑎𝑛𝑠
0, 𝑘 > 𝑎𝑛𝑠

• 评价函数在 [1, 2000]中单调递减，于是问题变为：查找使得 𝑐𝑎𝑛(𝑘) = 1的
最大的 𝑘。二分平均值 𝑘，判断是否存在一个长度 ≥ 𝐹 的子段平均数 ≥ 𝑘，
根据 𝑐𝑎𝑛(𝑘)的值，缩小答案所在的区间。

22 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】Best Cow Fences

1 bool can(double k) // 是否存在平均值大于等于 𝑘 的区间
2 {
3 for(int r = F; r <= n; ++r)
4 for(int l = 1; l <= r ‐ F + 1; ++l)
5 if((s[r] ‐ s[l ‐ 1]) / (r ‐ l + 1) >= k) return true;
6 return false;
7 }
8
9 double l = 1, r = 2000;
10 while(l + 1e‐6 < r)
11 {
12 double k = (l + r) / 2;
13 if(can(k)) l = k;
14 else r = k;
15 }
16 cout << (int)(r * 1000);

• 时间复杂度：O(𝑁2 log𝑁 )，比直接枚举的时间复杂度还要差。

23 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】Best Cow Fences

• 优化：每一次二分平均值 𝑘时，将每个牧场的奶牛数量都减去 𝑘，那么问题
就变为牧区内牧场奶牛数总和非负。那么问题变为：是否存在一个长度
≥ 𝐹 的子段，子段和非负 (≥ 0)，这与最长子段问题类似。

1 bool can(double k) // 是否存在平均值大于等于 k 的区间
2 {
3 // 每一次重新求减去 k 后的前缀和
4 for(int i = 1; i <= n; ++i) s[i] = s[i ‐ 1] + a[i] ‐ k;
5 double p = s[0]; // 最小前缀和
6 for(int r = F; r <= n; ++r)
7 {
8 p = min(p, s[r ‐ F]);
9 if(s[r] ‐ p >= 0) return true;
10 }
11 return false;
12 }

• 时间复杂度：O(𝑁 log𝑁 )。

24 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】子段和问题

【题目描述】
给定一个序列 𝑎中包含 𝑛个正整数，现在给你一个正整数 𝑆。请你编写一个程序
求一个长度最小的连续子段，使得子段的和大于等于 𝑆。
【输入格式】
第一行两个整数 𝑛, 𝑆(10 ≤ 𝑛 ≤ 105, 1 ≤ 𝑆 ≤ 108)。
第二行包含 𝑛个正整数 𝑎𝑖(1 ≤ 𝑎𝑖 ≤ 104)。
【输出格式】
输出一个整数，表示满足条件的最小长度，如果不存在，输出 0。
【输入样例】

10 15
5 1 3 5 10 7 4 9 2 8

【输出样例】
2

【样例解释】
子段 10, 7之和 17 ≥ 15，而且是最短的。

25 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】子段和问题

• 枚举所有子段，找到长度最小的连续子段，且字段和大于 ≥ 𝑆。
• 因为要求子段和 (区间和)，所以先求出序列 𝑎𝑖的前缀和 𝑠𝑖。
1 int ans = N;
2 // 枚举算法 1
3 for(int r = 1; r <= n; ++r) // 枚举子段右端点
4 for(int l = 1; l <= r; ++l) // 枚举子段左端点
5 if(s[r] ‐ s[l ‐ 1] >= S) ans = min(ans, r ‐ l + 1);
6
7 // 枚举算法 2
8 for(int len = 1; len <= n; ++len) // 枚举子段长度
9 for(int l = 1; l <= n ‐ len + 1; ++l)
10 {
11 int r = l + len ‐1;
12 if(s[r] ‐ s[l ‐ 1] >= S) ans = min(ans, r ‐ l + 1);
13 }
14 if(ans == N) cout << 0;
15 else cout << ans;

• 时间复杂度：O(𝑁2)，如何优化？

26 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】子段和问题

• 𝑎𝑖 ≥ 0，所以子段长度越大，子段和更容易 ≥ 𝑆。
• 考虑枚举算法 2，评价函数为：对于枚举的子段长度 𝑘，判断是否存在长度
为 𝑘的子段使得字段和 ≥ 𝑆。显然，这个评价函数在 [1, 𝑛]上是单调递增的。

• 问题转化为：查找使得 𝑐𝑎𝑛(𝑘) = 1的最小的 𝑘，可以使用二分答案。
1 bool can(int k) // 是否存在长度为 k 的子段子段和>=S
2 {
3 for(int r = k; r <= n; ++r) if(s[r] ‐ s[r ‐ k] >= S) return true;
4 return false;
5 }
6 int l = 1, r = n;
7 while(l < r)
8 {
9 int k = (l + r) / 2;
10 if(can(k)) r = k;
11 else l = k + 1;
12 }
13 if(l == n && s[n] < S) cout << 0;
14 else cout << ans;

• 时间复杂度：O(𝑁 log𝑁 )。
27 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】子段和问题

• 𝑎𝑖 ≥ 0，所以子段长度越大，子段和更容易 ≥ 𝑆。
• 考虑枚举算法 2，对于枚举的子段右端点 𝑗，左端点越小，子段和更容易

≥ 𝑆，那么需要在所有 𝑠[𝑗] − 𝑠[𝑘 − 1] ≥ 𝑆的 𝑘中找到最大的一个即可，可以
二分枚举 𝑘。

1 int ans = N;
2 for(int j = 1; j <= n; ++j)
3 {
4 int l = 1, r = j; // 二分找到 s[j] ‐ s[k ‐ 1] >= S 的最大的 k
5 while(l < r)
6 {
7 int k = (l + r + 1) / 2;
8 if(s[j] ‐ s[k ‐ 1] >= S) l = k;
9 else r = k ‐ 1;
10 }
11 if(s[j] ‐ s[l ‐ 1] >= S) ans = min(ans, j ‐ l + 1);
12 }
13 if(l == n && s[n] < S) cout << 0;
14 else cout << ans;

• 时间复杂度：O(𝑁 log𝑁 )。
28 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】子段和问题

• 对于枚举的右端点 𝑟，设其满足要求的最大的左端点为 𝑙，那么当 𝑟 → 𝑟 + 1
时，𝑙可能不动或者向右移动，绝对不会向左移动。

• 故而，对于枚举的右端点 𝑟，不需要每次二分查找左端点 𝑙，而是只需要维
护 𝑙，在 𝑠[𝑙 + 1, 𝑟] ≥ 𝑆 的情况下尽可能向右移动，那么停止的位置就是对应
枚举的右端点 𝑟的最大的左端点。

1 int ans = N;
2 int l = 1;
3 for(int r = 1; r <= n; ++r)
4 {
5 while(l < r && s[r] ‐ s[l] >= S) ++l; // s[l+1,r] < S 结束
6 if(s[r] ‐ s[l ‐ 1] >= S) ans = min(ans, r ‐ l + 1);
7 }
8 if(ans == N) cout << 0;
9 else cout << ans;

• 时间复杂度：O(𝑁 )。

29 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】化装晚会

【题目描述】
农夫约翰想让奶牛们参加化装晚会，但是不幸的是他只有一件服装。服装只好适
合两头体重和小于等于 𝑆 的情况，约翰有 𝑛头牛要来参见这场舞会，这些牛编
号从 1到 𝑛，其中第 𝑖头牛的体重为 𝑎[𝑖]，约翰想知道有多少对牛能穿这件服装。
【输入格式】
第一行两个整数 𝑛, 𝑆(2 ≤ 𝑛 ≤ 2 × 104, 1 ≤ 𝑆 ≤ 106)。
第二行包含 𝑛个正整数 𝑎𝑖(1 ≤ 𝑎𝑖 ≤ 106)。
【输出格式】
输出一个整数，表示选择的所有方案数。注意奶牛顺序不同的两种方案是被视为
相同的。
【输入样例】

4 6
3 5 2 1

【输出样例】
4

【样例解释】
4种选择分别为：奶牛 1和奶牛 3；奶牛 1和奶
牛 4；奶牛 2和奶牛 4；奶牛 3和奶牛 4。

30 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】化装晚会

• 枚举所有的奶牛对，判断是否符合体重之和 ≤ 𝑆 即可。
• 注意避免重复枚举。
1 int cnt = 0;
2 for(int i = 1; i <= n; ++i)
3 for(int j = i + 1; j <= n; ++j)
4 if(a[i] + a[j] <= S) ++cnt;
5 cout << cnt;

• 时间复杂度：O(𝑁2)。

31 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】化装晚会

• 将奶牛按照体重从小到大排序。
• 枚举左侧的奶牛 𝑖，在奶牛 𝑖的右侧寻找能与之配对的奶牛 𝑗，那 𝑎[𝑖] + 𝑎[𝑗]
是单调递增的，因此可以二分找到最远的 𝑎[𝑖] + 𝑎[𝑗] ≤ 𝑆 的奶牛位置 𝑗，则
符合条件的奶牛对数增加 𝑗 − 𝑖。

1 sort(a + 1, a + n + 1);
2 int cnt = 0;
3 for(int i = 1; i <= n ‐ 1; ++i)
4 {
5 int l = i + 1, r = n; // 二分查找 a[i]+a[j]<=S 的最大的 k
6 while(l < r)
7 {
8 int k = (l + r + 1) / 2;
9 if(a[i] + a[k] <= S) l = k;
10 else r = k ‐ 1;
11 }
12 if(a[i] + a[l] <= S) cnt += (l ‐ i);
13 }
14 cout << cnt;

• 时间复杂度：O(𝑁 log𝑁 )。
32 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

【例】化装晚会

• 因为奶牛已经按照体重从小到大排序，所以在从左向右枚举左侧的奶牛 𝑖
时，𝑎[𝑖]在递增，所以与之匹配的最远的奶牛 𝑗的 𝑎[𝑗]应该是递减的，那么
在整个枚举的过程中 𝑗只会向左侧移动。

• 所以只要维护一个 𝑗，在 𝑖右移时，对 𝑗进行左移即可。
1 sort(a + 1, a + n + 1);
2 int cnt = 0;
3 int j = n;
4 for(int i = 1; i <= n ‐ 1; ++i)
5 {
6 while(i < j && a[i] + a[j] > S) ‐‐j;
7 if(i < j && a[i] + a[j] <= S) cnt += (j ‐ i);
8 }
9 cout << cnt;

• 排序时间复杂度 O(𝑁 log𝑁 )，枚举奶牛时间复杂度 O(𝑁 )，所以算法的整体
时间复杂度为 O(𝑁 log𝑁 )。

33 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

总结

• 二分答案就是将求解问题转化为一个评价问题，而且评价函数有单调性，可
以用二分的方法来解决。

• 二分答案的关键在于确定评价函数和二分的方式。
• 常见问题：最大值最小或最小值最大。

图:最大值最小化 图:最小值最大化

• 在某些情况下，利用双指针扫描的方法可以加快算法的速度。

34 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

练习

• 查找 ≥ 𝑥的最小数 (COGS 2882)
• 查找 ≤ 𝑥的最小数 (COGS 2887)
• 设计书架 (COGS 3427)
• 愤怒的牛 (COGS 3195)
• 最长子段 (COGS 3428)
• Best Cow Fences(COGS 3188)
• 山头狙击战 (COGS 1092)
• 数列分段 2(COGS 3196)
• 子段和问题 (COGS 3980)
• 化装晚会 (COGS 140)
• 零落尘 (COGS 3978)
• Innovative Business(COGS 2851)

35 / 36



二分答案

河南省实验中
学信息技术组

二分

二分答案

设计书架

愤怒的牛

最长子段

Best Cow Fences

双指针扫描

子段和问题

化装晚会

总结

练习

练习

• 防线 (COGS 1022)
• Corral the Cows(COGS 1991)
• 聪明的质检员 [NOIP 2011](COGS 631)
• 借教室 [NOIP 2012](COGS 1266)
• Brownie Slicing G(COGS 532)

36 / 36


	二分
	二分答案
	设计书架
	愤怒的牛
	最长子段
	Best Cow Fences

	双指针扫描
	子段和问题
	化装晚会

	总结
	练习

